Thursday, March 18, 2010

Human sensors

Sense - Wikipedia, the free encyclopedia
Sight

Sight or vision is the ability of the brain and eye to detect electromagnetic waves within the visible range (light) which is why people see interpreting the image as "sight." There is disagreement as to whether this constitutes one, two or three senses. Neuroanatomists generally regard it as two senses, given that different receptors are responsible for the perception of colour (the frequency of photons of light) and brightness (amplitude/intensity - number of photons of light). Some argue[citation needed] that stereopsis, the perception of depth, also constitutes a sense, but it is generally regarded as a cognitive (that is, post-sensory) function of brain to interpret sensory input and to derive new information. The inability to see is called blindness.
[edit] Hearing

Hearing or audition is the sense of sound perception. Since sound is vibrations propagating through a medium such as air, the detection of these vibrations, that is the sense of the hearing, is a mechanical sense because these vibrations are mechanically conducted from the eardrum through a series of tiny bones to hair-like fibers in the inner ear which detect mechanical motion of the fibers within a range of about 20 to 20,000 hertz,[4] with substantial variation between individuals. Hearing at high frequencies declines with age. Sound can also be detected as vibrations conducted through the body by tactition. Lower frequencies than that can be heard are detected this way. The inability to hear is called deafness.
[edit] Taste

Taste or gustation is one of the two main "chemical" senses. There are at least four types of tastes[5] that "buds" (receptors) on the tongue detect, and hence there are anatomists who argue[citation needed] that these constitute five or more different senses, given that each receptor conveys information to a slightly different region of the brain[citation needed]. The inability to taste is called ageusia.

The four well-known receptors detect sweet, salt, sour, and bitter, although the receptors for sweet and bitter have not been conclusively identified. A fifth receptor, for a sensation called umami, was first theorised in 1908 and its existence confirmed in 2000[6]. The umami receptor detects the amino acid glutamate, a flavour commonly found in meat and in artificial flavourings such as monosodium glutamate.

Note: that taste is not the same as flavour; flavour includes the smell of a food as well as its taste.
[edit] Smell

Smell or olfaction is the other "chemical" sense. Unlike taste, there are hundreds of olfactory receptors, each binding to a particular molecular feature. Odor molecules possess a variety of features and thus excite specific receptors more or less strongly. This combination of excitatory signals from different receptors makes up what we perceive as the molecule's smell. In the brain, olfaction is processed by the olfactory system. Olfactory receptor neurons in the nose differ from most other neurons in that they die and regenerate on a regular basis. The inability to smell is called anosmia. Some neurons in the nose are specialized to detect pheromones.[citation needed]
[edit] Touch

Touch, also called tactition or mechanoreception, is a perception resulting from activation of neural receptors, generally in the skin including hair follicles, but also in the tongue, throat, and mucosa. A variety of pressure receptors respond to variations in pressure (firm, brushing, sustained, etc). The touch sense of itching caused by insect bites or allergies involves special itch-specific neurons in the skin and spinal cord.[7] The loss or impairment of the ability to feel anything touched is called tactile anesthesia. Paresthesia is a sensation of tingling, pricking, or numbness of the skin that may result from nerve damage and may be permanent or temporary.
[edit] Balance and acceleration
Main article: Vestibular system

Balance, equilibrioception, or vestibular sense is the sense which allows an organism to sense body movement, direction, and acceleration, and to attain and maintain postural equilibrium and balance. The organ of equilibrioception is the vestibular labyrinthine system found in both of the inner ears. Technically this organ is responsible for two senses of angular momentum and linear acceleration (which also senses gravity), but they are known together as equilibrioception.

The vestibular nerve conducts information from sensory receptors in three ampulla that sense motion of fluid in three semicircular canals caused by three-dimensional rotation of the head. The vestibular nerve also conducts information from the utricle and the saccule which contain hair-like sensory receptors that bend under the weight of otoliths (which are small crystals of calcium carbonate) that provide the inertia needed to detect head rotation, linear acceleration, and the direction of gravitational force.
[edit] Temperature

Thermoception is the sense of heat and the absence of heat (cold) by the skin and including internal skin passages, or rather, the heat flux (the rate of heat flow) in these areas. There are specialized receptors for cold (declining temperature) and to heat. The cold receptors play an important part in the dogs sense of smell, telling wind direction, the heat receptors are sensitive to infrared radiation and can occur in specialized organs for instance in pit vipers. The thermoceptors in the skin are quite different from the homeostatic thermoceptors in the brain (hypothalamus) which provide feedback on internal body temperature.
[edit] Kinesthetic sense

Proprioception, the kinesthetic sense, provides the parietal cortex of the brain with information on the relative positions of the parts of the body. Neurologists test this sense by telling patients to close their eyes and touch the tip of a finger to their nose. Assuming proper proprioceptive function, at no time will the person lose awareness of where the hand actually is, even though it is not being detected by any of the other senses. Proprioception and touch are related in subtle ways, and their impairment results in surprising and deep deficits in perception and action. [8]
[edit] Pain

Nociception (physiological pain) signals near-damage or damage to tissue. The three types of pain receptors are cutaneous (skin), somatic (joints and bones) and visceral (body organs). It was previously believed that pain was simply the overloading of pressure receptors, but research in the first half of the 20th century indicated that pain is a distinct phenomenon that intertwines with all of the other senses, including touch. Pain was once considered an entirely subjective experience, but recent studies show that pain is registered in the anterior cingulate gyrus of the brain.[9]
[edit] Direction

Magnetoception (or magnetoreception) is the ability to detect the direction one is facing based on the Earth's magnetic field. Directional awareness is most commonly observed in birds, though it is also present to a limited extent in humans. It has also been observed in insects such as bees. Although there is no dispute that this sense exists in many avians (it is essential to the navigational abilities of migratory birds), it is not a well-understood phenomenon.[10] One study has found that cattle make use of magnetoception, as they tend to align themselves in a north-south direction.[11] Magnetotactic bacteria build miniature magnets inside themselves and use them to determine their orientation relative to the Earth's magnetic field.[citation needed]
[edit] Other internal senses

An internal sense or interoception is "any sense that is normally stimulated from within the body".[12] These involve numerous sensory receptors in internal organs, such as stretch receptors that are neurologically linked to the brain.

* Pulmonary stretch receptors are found in the lungs and control the respiratory rate.
* The chemoreceptor trigger zone is an area of the medulla in the brain that receives inputs from blood-borne drugs or hormones, and communicates with the vomiting center.
* Cutaneous receptors in the skin not only respond to touch, pressure, and temperature, but also respond to vasodilation in the skin such as blushing.
* Stretch receptors in the gastrointestinal tract sense gas distension that may result in colic pain.
* Stimulation of sensory receptors in the esophagus result in sensations felt in the throat when swallowing, vomiting, or during acid reflux.
* Sensory receptors in pharynx mucosa, similar to touch receptors in the skin, sense foreign objects such as food that may result in a gag reflex and corresponding gagging sensation.
* Stimulation of sensory receptors in the urinary bladder and rectum may result in sensations of fullness.
* Stimulation of stretch sensors that sense dilation of various blood vessels may result in pain, for example headache caused by vasodilation of brain arteries.


No comments: